BUSINESS ECONOMICS

Slides by CAO Thi Hong Vinh

Chapter 3:

DEMAND & CONSUMER BEHAVIOR

Required: *Business Economics and Managerial Decision Making*, C.4-6 Recommend: *Economics for*

Business and Management, C.2

STRUCTURE

- 1. Demand analysis
- 2. Demand function estimation
- 3. Consumer behavior

1.1 Market demand

1.2 Revenue 1.3 Elasticity

1.1 Market demand

Summation?

- $Q_x = f(P_x, P_y, A_x, Y, T, O)$
- Q_x: quantity demanded of good X
- P_x : price of good X
- P_y : price of good Y
- A_x: advertising expenditure
- Y: real disposable income
- T: consumer tastes
- O: other factors

1.1 Market demand

For simplicity:

 $Q_x = f(P_x)$ Inverse demand function?

i.e. Linear demand f.: $Q_x = a + bP_x$ $\rightarrow Q (P=0)$ $\rightarrow P (Q=0)$ $\rightarrow Slope \Delta Q_x / \Delta P_x$

TR? AR? MR?

- i.e. $Q_x = a + bP_x$
- \rightarrow A linear MR curve
- → A MR curve: slope is twice that of the demand curve
- \rightarrow TR is maximized where MR is 0

Responsiveness to changes

1.3.1. Own price elasticity *a. Formula:* $\varepsilon = \frac{\Delta Q_x / Q_x}{\Delta P_x / P_x}$

- Sign? (0) Law of demand?
- Magnitude? (1)

(a)

(d)

(e)

TR? MR?

$$Q_{x} = a + bP_{x}$$

$$\varepsilon = f(a, Q_{x}) = \frac{a}{Q_{x}} - 1$$

$$MR = f(\varepsilon, P_{x}) = P_{x}(1 + \frac{1}{\varepsilon})$$

ε	MR (0)	Change in TR
		(as P falls)
Inelastic		
Elastic		

b. Factors affecting :

Price effect = substitution effect + income effect

- Substitution effect: Closer substitute → more or less elastic?
- Income effect: Large proportion of income → more or less elastic?
- Time: Longer period \rightarrow more or less elastic?

c. Arc elasticity :

Non-linear, large change in price....

1.3.2. Cross-price elasticity *Formula:*

$$\varepsilon_{c} = \frac{\Delta Q_{x} / Q_{x}}{\Delta P_{y} / P_{y}}$$

Substitute or complementary?

1.3.2. Income elasticity

Formula:
$$\varepsilon_I = \frac{\Delta Q_x / Q_x}{\Delta I / I}$$

Normal or inferior?

- Engel curve
- Factors affecting: initial income level, status of the goods (necessities or luxuries), age of the goods...

1 Quantity demanded of X Q_2 2 Q_1 3 Real income Y_1 Y₂ 0

1.3.2. Advertising elasticity

Formula:

A is informative or persuasive?

2. Demand function estimation

Different methods:

- Interviews and surveys (using questionnaires)
- Consumer experiments
- Market studies
- Statistical analysis (using regression)

2. Demand function estimation

- Statistical analysis (using regression) 2.1 Setting model:
- Linear equation:

 $Q_x = a + b_1 P_x + b_2 P_y + b_3 A_x + b_4 Y + b_5 X_n$ Log-linear equation:

 $logQ_{x} = a + b_{1}logP_{x} + b_{2}logP_{y} + b_{3}logA_{x}$ $+ b_{4}logY + b_{5}logX_{n}$

2. Demand function estimation

2.2 Checking results:

- a. R^2 and adjusted R^2
 - (overall explanatory power)
 - . Too low \rightarrow misspecification of the model
 - . Too high \rightarrow multi-collinearity

2.2 Checking results:

b. F-test: dep. & a group of ind.

H0: no significant statistical rel. $F > F_b \rightarrow reject H0$

c. t-test: dep. & an ind. H0: no significant statistical rel. $t > t_b \rightarrow$ reject H0

2.2 Checking results:

d. Coefficients:

. Sign: if not the expected

→ Omission

→ Identification (simultaneous change between the variable included and the one not included): price and income

. Statistical significance (standard error)

95% probability of the actual value falls into (estimated value +/- 2* standard errors)

2.2 Checking results:

e. Auto-correlation:

- Error terms: serially correlated
- \rightarrow Overestimating/underestimating the unexplained variation
- → Durbin-Watson statistic:
 - Ho: there is auto-correlation

Table 6.2 Estimates of log-linear demand functions for alcoholic drink in the UK

Variable	Beer	Spirits	Wine
Constant	-31418 (11.2225)*	-2.2399 (4.9596)*	-2.6390 (4.3719)*
Real price of good	0.2376	-1.1802 (4.8437)*	-0.6385 (1.7227)*
Real price of all other goods	-0.1530 (1.0895)	0.9827 (5.3567)*	0.6714 (2.1715)*
Real income	0.8018 (6.7752)*	1.6677 (8.9848)*	2.5045 (11.6745)*
Real per capita advertising	0.0742 (2.6327) ^A	-0.0142 (0.3770)	-0.0865 (1.3869)
Adjusted R ²	0.950	0.975	0.963
Durbin-Watson Statistic	1.716	2.048	2.109
Standard error (×10 ³)	0.5068	0.4376	0.3070

Note	t-ratios in parentheses
	^a Statistically significant at the 5% level
Source	Parts of table 1 from Duffy (1983).

3. Consumer behavior

- Maximize utility with budget constraint
- Characteristic approach

(show the proliferation of similar but different goods based on their characteristics)

- Behavioral approach

(make use of rules of thumb and routines→ imperfect information)

Maximize utility

- 3.1 Indifference curve:
- A level of utility \rightarrow intersect?
- A set of preferences and choices
 - Assume: 2 substitutes (more is better and no durable characteristics)
- Convex to the origin
- Slope downward

3.2 Budget constraint:

 $M = P_x Q_x + P_y Q_y$

$$\Rightarrow Q_{y} = \frac{M}{P_{y}} - \frac{P_{x}}{P_{y}}Q_{x}$$

Slope?

3.3 Price effect (= Sub. + Inc.)

3.4 Criticism of indifference curve:

- How to set preferences?
- Static
- The way that consumers make decisions?
- Ordering just based on utility?
- No interactions among individuals
- Private goods